

 Disclaimer
 This is a living document and will be updated to conform with necessary business and use decisions and as the
 product evolves. Questions about the document should be directed to support@corvee.com .

 2

 Table of Contents
 KEY SECURITY FEATURES 5

 Principles 5
 Security by Design 5
 Math Above Policies & Software 5
 People Are a Part of the System 5
 Transparency 5
 Know Your Audience 5

 Security 5
 User Authentication 6
 Master Password 6
 Key Derivation 6

 Preprocessing master password 6
 Normalization 6
 Salting 7

 Slow Hashing 7
 PBKDF2 (Password-Based Key Derivation Function 2) 7

 Password Authenticated Key Exchange (PAKE) 8
 SRP (Secure Remote Password) Protocol 8

 SRP overview 9
 SRP in depth 10
 From here, the protocol proceeds as follows: 10

 Pre-Shared Key 13
 Multi-Factor Authentication (MFA) 13

 SMS 14
 TOTP 14

 Account Lockout 14
 Data Encryption 14

 Data transmission 14
 HTTPS 14
 Encrypted tunnel using PSK 14

 AES-256-GCM 15
 Request signature 16

 HMAC-SHA-256 16
 Sensitive Data 16

 What is sensitive data? 16
 Symmetric encryption 16

 AES-256-GCM 16
 Authenticated algorithm 16

 Infrastructure-level encryption 17
 Key Management 17

 Key creation 17
 Key exchange 17

 Document: 18
 Data Anonymization 20

 3

 Access Controls 20
 Cryptographic security protocols 20

 User, Firm, Client Keys 20
 Server-side security protocols 20
 Client-side security protocols 21

 HSTS (HTTP Strict Transport Security) 21
 Computing infrastructure 21

 Client 21
 Static Hosting 21
 WebCrypto 21

 API 21
 Serverless functions 22

 Lambda 22
 Code verification and reproducible binaries 22
 API authentication and access control 22

 Proactive Security Measures 23
 Algorithm agnostic 23
 NIST recommendations comparison 23
 RSA-2048 vs. RSA-4096 24

 Account Recovery 25
 Emergency Recovery Kit 25
 Group Member Recovery 25
 Local Recovery 25

 Document Identification 26
 Textract 27
 Privacy of Sensitive Data 27

 Marker hashing 28
 No storage of any data other than form name and year 29

 E-Signature 30
 Data Integrity 30
 Audit Trail 30

 QLDB 30

 Appendix A: RSA 31
 Asymmetric Encryption 31
 Key Generation 31
 Encryption 31
 Decryption 32

 Appendix B: AES-256-GCM 32
 Symmetric Block Encryption 32

 AddRoundKey 33
 SubBytes 33
 MixColumns 34

 GCM Mode of Operation 35

 Appendix C: SHA-256 36

 Appendix D: HMAC 38

 4

 KEY SECURITY FEATURES
 ● End-to-end encryption
 ● Server ignorance
 ● No crackable information stored
 ● Thrice encrypted on transport
 ● User control over sharing
 ● Team-managed account recovery

 Principles
 Security by Design
 We cannot compromise data that we don’t know. Because we never see and never have a way to access our users’ data,
 we provide them with the highest level of privacy possible.

 Math Above Policies & Software
 Even the best-designed policies and software have weaknesses that make them vulnerable to exploits. For this reason, all
 data in Corvee is transmitted and secured in a provable, practically invulnerable cryptographic manner.

 People Are a Part of the System
 People are not perfect, and their behavior should not always be dictated by the software. We must keep our demands on
 the user to a minimum and abstract the most difficult parts away from them to provide a simple, yet ultimately secure,
 product.

 Transparency
 Every element of Corvee has been designed with security front and center. By making sure that our security is not
 dependent on secrets, but rather built into every facet of Corvee, we are able to explain how it all works in the document
 and make our security decisions verifiable by an external party.

 Know Your Audience
 While each user is unique, the nature of the business means that users need to solve common problems. By having a deep
 understanding of our customer and their needs, we are able to provide solutions that work the way they work.

 Security
 Corvee is a system that is encrypted from end to end. The basic building block of Corvee’s security lies in the fact that all
 data in the system is encrypted and decrypted using keys derived on the client side from the master password, which
 remains totally invisible to Corvee at every point, and Corvee cannot access it.

 To this end, we have designed our user authentication differently than traditional password-based user authentication.
 Instead of traditional authentication mechanisms, Corvee focuses on two points: avoiding the pitfalls of traditional user
 authentication by substituting it with the Secure Remote Password Protocol (SRP) and using the derived key from SRP as
 a secure and secret PSK (pre-shared key) to enable end-to-end encryption.

 5

 User Authentication
 User Authentication is the cornerstone of security. It permits us to distinguish between authorized users, unauthorized
 users and malicious actors. In line with our guiding principles, we have developed a set of desirable qualities for our user
 authentication mechanism:

 1. Prove client and server ID
 2. No eavesdropping
 3. Not replayable
 4. No secrets exchanged
 5. Session key
 6. Vault keys
 7. Cracking proof
 8. User control

 Master Password
 Users’ master passwords are the ultimate stopgap for our security measures. Because they are never stored anywhere
 outside the user’s own memory, they are impossible to steal. They are used to derive the keys necessary to encrypt and
 decrypt every document and piece of data on the Corvee system.

 Key Derivation
 The user’s derived key is used to wrap all the vault keys they have access to. It is derived from the master password of the
 client, so it is never transmitted to anyone else. The key is derived anew each session and encrypted on the client end, and
 it is only transmitted to the database once both the client and API verify each other’s identity and the client encodes the
 derived key.

 When deriving the key from the password, your master password is first preprocessed by normalizing the password and
 then salted. It is then passed through a slow-hashing function known as PBKDF2 with 100,000 iterations. This produces a
 32-byte key, which is then used to derive the pre-shared key.

 Preprocessing master password
 Neither passwords nor any key derived thereof are ever transmitted to a server, and they never leave the client.
 This means that there is never a point in any workflow where a malicious actor can intercept any passwords,
 attempted passwords or failed passwords

 Normalization
 The first step in deriving the key is to normalize the password using Unicode equivalence (NFKD
 normalization). For instance, the Spanish letter ñ can be represented in two different ways: the Latin
 character “n” (U+006E) followed by the combining tilde “˜” (U+0303) is equivalent to the single “ñ”
 character U+0041. This can clearly result in the same input from the user producing two different strings,
 ultimately resulting in different hashes and consequently a malformed key. By normalizing the user’s
 password before hashing the password, Corvee ensures that the user’s password always results in the
 same hash, allowing Corvee to unambiguously produce the same hash during key derivation.

 6

 Salting
 Salting passwords before hashing protects batches of passwords against rainbow tables. After the
 master password is normalized and encoded into an unambiguous UTF-8 string, a random 128-bit salt is
 generated. This randomly generated salt is then appended to the normalized master password in
 preparation for hashing. This extra salt prevents users’ passwords from hashing to the same value.

 Slow Hashing
 Corvee implements slow hashing algorithms to increase the difficulty of mounting password cracking attacks. These
 attacks rely on the ability of attackers to guess a huge number of passwords and hashes quickly — and by slowing down
 each guess enough, we make the task so time consuming that it would take many lifetimes to complete.

 Slow hashing provides greater protection than regular one-round hashing by iterating the hash function over the previous
 iteration’s output. Corvee implements the hashing algorithm PBKDF2 with 100,000 iterations, significantly slowing down
 anyone attempting to brute force a password.

 PBKDF2 (Password-Based Key Derivation Function 2)
 The resulting concatenation of the normalized master password and the salt is then used to derive the key with
 PBKDF2 using SHA-256 as its hashing function. The key is derived from over 100,000 iterations of the PBKDF2.

 PBKDF2 allows for an arbitrary amount of iterations to increase computational time to slow down potential
 attackers.

 7

 Password Authenticated Key Exchange (PAKE)
 PAKE methods are interactive methods used between multiple parties to establish a shared key for secured connection.
 There are several different types of PAKE, but not all of them satisfy our principles. Commonly, both parties are privy to a
 password that allows them to establish a shared key for communication. While this is a strong guarantee of data security, it
 does not satisfy our “Security by Design” principle. If the server knows a password, it becomes a system vulnerability that
 must be protected. To that end, Corvee uses an Augmented PAKE, which guarantees that the server remains incognizant
 to any password-like information.

 SRP (Secure Remote Password) Protocol
 The SRP Protocol is an Augmented PAKE based on the Diffie-Hellman Key Exchange. This protects against two
 well-known vulnerabilities: it protects against a man-in-the-middle attack from eavesdropping on enough
 information to gain access to the system, and it avoids the need for a server to know any password-like
 information to authenticate its clients. This renders any attack on the system meant to eavesdrop on information
 useless.

 A key benefit of using SRP versus other PAKEs is that it can authenticate a password without ever passing it to
 the server. This means that the password can simultaneously be the source from which to derive a key to encrypt
 data without ever revealing the key. We leverage this capacity in Corvee by wrapping vault keys with the derived
 key, ensuring that the key is never logged, stored or even revealed at any point of our system.

 8

 This works because one party can prove another party is in possession of a password without ever seeing it. The
 secret lies in each party independently generating a key based on their password and a certain operation. Then,
 the generated key can be provided to the opposing party to again combine with their own private key, such that
 both parties are in possession of a matching result.

 SRP overview
 A simple analogy of the Diffie-Hellman protocol can be demonstrated using colors (via Wikipedia):

 In this example, the secret colors are both unknown to the opposite party. This is analogous to the user password. The
 addition of the common paint is analogous to the operation performed on the user password. After exchanging the
 resulting keys, each party performs another operation on the key received from the other party. Without both parties acting
 honestly, the common secret will not match. This verifies both the client to the server and the server to the client without
 either having to reveal their secret.

 9

 SRP in depth
 Take a deep breath and brace yourself. We’ll get through this together. Here, we lay out a detailed and
 mathematical explanation of how SRP works. If you want to continue, just know that the next section is a
 lot easier to read and understand.

 SRP is based on arithmetic on the multiplicative group of integers modulo N 1 and the generator 2 g, Let q
 and N be prime where q = 2N + 1. This makes N a safe prime 3 and q a Sophie Germain prime 4 .
 Furthermore, let N be large enough that computing discrete logs mod N is infeasible. Finally, let k = H(s,p)
 where s is a small salt and p is the user password sourced secret; and v = g x where x ≥ k.

 From here, the protocol proceeds as follows:

 1. Alice to Bob:
 a. Generate random value a.
 b. Send identifying username I and ephemeral user key A = g a .

 10

 2. Bob to Alice:
 a. Generate random value b.
 b. Send small salt s and ephemeral host key B = kv + g b .

 3. Both calculate:
 a. u = H(A, B)

 S Alice = (B - kg x) (a + ux) => (g b) (a + ux)

 K Alice = H(S Alice)
 S Bob = (Av u) b => (g b) (a + ux)

 K Bob = H(S Bob) = H(S Alice) = K Alic

 1 A multiplicative group of integers modulo n refers to the integers from the set {0, 1, ..., n-1} that are coprime (i.e., relatively prime) to n.
 2 A generator g for a multiplicative group of integers modulo n is an integer g < n where the powers of g produce all possible residues
 modulo n coprime to n and give each exactly once.

 3 A safe prime N is a prime number s.t. N = 2p + 1, where p is also prime.
 4 A Sofie Germain prime p is a prime number s.t. N 2p + 1, where N is also prime.

 At this point, Alice and Bob can compare their keys and see they are the same.
 The keys here negotiated become the derived key, the PSK.

 11

 12

 Pre-Shared Key
 A new Pre-Shared Key (PSK) is generated with each session.

 The first time a user activates their account, the PSK is generated as a random 32-byte alphanumeric token and
 encrypted using RSA with a SHA-256 hash function using the user’s public key. Once the account has been
 activated and the user has created a password, the PSK is instead the output from SRP from the randomly
 generated keys from the API and the client.

 In either case, the PSK is returned to the client-side server paired with an access token. This token continues
 granting access to the system until the token expires or the user logs out.

 Multi-Factor Authentication (MFA)
 The addition of MFA provides an extra layer of security and significantly increases the difficulty for an attacker to complete
 a malicious login. Not only would it require successfully bypassing all the cryptographic and security protocols that are
 inherent to Corvee, but it requires a successful and simultaneous attack on the second factor used to verify a login
 attempt. Because users who opt in to MFA must complete both the password verification and their second, separate
 authentication factor, an attacker would need to confront two secure systems simultaneously, significantly raising the
 difficulty of mounting a successful infiltration.

 13

 SMS
 SMS multi-factor authentication adds an extra layer of security to a user’s Corvee login by sending them a code
 via SMS to input as part of the user authentication process. The code sent by Corvee must match the code input
 by the user in order to successfully authenticate. Because access to a user’s SMS messages is unlikely to be tied
 to their other logins, SMS MFA adds another layer of security to a user’s authentication.

 TOTP
 Like SMS MFA, TOTP (Time-Based One-Time Password) authentication requires a user to input a code generated
 by a third-party app as a part of the signup process.

 Examples of apps that enable TOTP authentication include Google Authenticator, Microsoft Authenticator and
 Authy.

 Account Lockout
 In addition to the safeguards in place against password-cracking attacks, there is a simple heuristic method to detect a
 malicious actor. All password-cracking attacks depend on the ability to try vast numbers of passwords. Not only does
 Corvee make the possibility of correctly guessing a password within a human lifetime a mathematical impossibility, but it
 also protects accounts from excessive login attempts.

 Data Encryption
 Corvee is an end-to-end encryption system. At no point is any sensitive information stored or transmitted under less than
 two layers of encryption, and it is usually transmitted under three layers of encryption.

 By combining the security of AES-256-GCM encryption and wrapping the keys with RSA-4096 wrapped key management,
 Corvee operates under strong cryptography that makes unauthorized access to any data impossible.

 Data transmission
 Recognizing that data can be intercepted or tampered with during transmission, Corvee ensures that data is never
 left vulnerable during transit. All connections take place over HTTPS. Finally, all authorized requests to the API
 must be signed using HMAC.

 HTTPS
 Corvee’s first defense is that traffic flows over HTTPS tunnels, verifying the identity of the server by a
 trusted third party. HTTPS is an extension of the original protocol that powered the internet, (i.e., HTTP
 [Hypertext Transfer Protocol]). This extension provides for secure communication over a network by
 empowering a trusted third party to manage and issue certificates, which allows for privacy and integrity
 of transmitted data, as well as identity verification for accessed websites.

 HTTPS likewise enables encryption of all data in support of our E2E encryption model as one of the
 strategies to keep your data secure under transit.

 Encrypted tunnel using PSK
 All data transmitted from the client to S3 or to the API is transmitted encrypted with AES-256-GCM using
 the client’s PSK.

 14

 AES-256-GCM
 Corvee uses the NIST-selected block encryption cipher AES-256-GCM to transmit any data
 through an encrypted tunnel using the PSK. AES describes a symmetric key encryption
 algorithm based on the Rijndael block cipher.

 Being a block encryption cipher, it uses a block cipher mode of operation to encrypt/decrypt
 streams of data, such as the Galois/Counter Mode (GCM). GCM is a high-performance mode of
 operation, which allows for highly secure and efficient encryption and decryption of streams of
 data. Corvee’s adherence to the strongest variant of AES (256) means that any data from
 Corvee’s servers is transmitted securely and privately, while using GCM as the mode of
 operation allows for efficient and authenticated access to the data prior to transmission over the
 encrypted tunnel.

 AES-256 ensures undecryptability. A brute force key-cracking attack to recover an AES-256
 encryption key requires 2^254.3 operations and thousands of terabytes of storage. This high
 barrier precludes even the most determined attacker from read access to documents
 transmitted to or from Corvee.

 15

 Request signature
 Requests can come from any source over the internet. For this reason, it is important to distinguish
 between authentic, legitimate requests from authorized users and inauthentic, potentially malicious
 requests from unauthorized actors. Every request to the Corvee API requires a request signature that
 verifies the sender’s legitimacy, as well as that their request has not been tampered with.

 HMAC-SHA-256
 Every authenticated request on Corvee is signed using HMAC (a key-hashed message
 authentication code). This verifies the data integrity and authenticity of requests to authenticated
 endpoints on Corvee’s API.

 Corvee uses SHA-256 as the HMAC’s hashing algorithm.

 Sensitive Data
 A key feature in Corvee is the proper handling and storage of all sensitive data. As an end-to-end encrypted system,
 Corvee makes sure to properly handle and store sensitive data using encryption, authentication, anonymization and other
 methods. By authenticating every request that affects sensitive data, we make sure that only those authorized to view or
 modify sensitive data can do so.

 What is sensitive data?
 Sensitive data, such as documents uploaded to our system along with their contents, are encrypted or properly
 handled to prevent our system or anyone at Corvee from being able to analyze sensitive data. The entire system is
 built around the idea of keeping this information unknown or unknowable to the staff at Corvee.

 In order to protect this data, Corvee implements a wide variety of strategies to secure necessary data, anonymize
 relevant data and discard any personal identifying information.

 Symmetric encryption
 All data in Corvee is stored encrypted. This ensures that only users in possession of the proper key can decrypt
 and modify any data on the system.

 AES-256-GCM
 All objects are kept encrypted using an object key with AES-256-GCM. The object key is stored
 asymmetrically wrapped using the client’s RSA-4096 key pair in the database, which in turn is wrapped
 using the user’s key pair.

 This user key pair can only be unwrapped using the user’s derived key. Only the authorized user can
 traverse the key chain and decrypt the content.

 Authenticated algorithm
 AES-256-GCM is an authenticated encryption algorithm. This guarantees not only data
 authenticity, but also integrity. Changing any part of a transmitted message would invalidate the
 message and make it undecryptable, thus ensuring the message’s data integrity. Attacks
 centered on altering message contents or transmissions are rendered useless by using this
 method.

 16

 Infrastructure-level encryption
 In addition to the application-level encryption, Corvee also stores all data in AWS services encrypted at the
 infrastructure level. The data stored in AWS services — namely, in S3, RDS, or any related configuration — is
 encrypted using an AWS KMS key. These keys are kept secret as an added precaution at the infrastructure level.
 However, in line with our principle of “Security by Design,” the security of the system does not depend on the
 secrecy of these keys because the data is encrypted at the application layer as well.

 Key Management
 When a user uploads a document, it becomes visible to other authorized users but not to anyone at Corvee or other
 unauthorized users on the platform. The place where any user can upload an object, such as a document or questionnaire
 reply, is referred to as a “vault.” A vault encompasses the location where clients, users, firms and entities may upload an
 object and indicates to whom an object belongs. Additionally, users can belong to an organization, which can be either a
 client or a firm, even though only users can take any action — organizations only serve as mechanisms by which to share
 keys. Because every uploaded object is encrypted using a key, there must be a way to share keys securely with other
 authorized users such that all users authorized to view a document can do so.

 Key creation
 The user’s key is generated as an RSA-4096 key pair. The user’s private key is then wrapped using the key
 derived from the user’s password. This wrapped key is saved to the database, where it can be retrieved and safely
 sent to the user, who may unwrap it and use it in the Corvee client-side application only through knowledge of the
 chosen password.

 Key exchange
 Corvee solves the problem of key exchange among users, clients and firms by extracting the concept of a vault.
 A vault refers to the place an object was uploaded, and the vault key refers to the key pair used to wrap the key
 that encrypted the object within that vault.

 When an object is saved, be it a document, questionnaire or any other such material, an object key is generated
 and used to encrypt the object. This object key is then wrapped using the vault key. It is this wrapped vault key
 that enables decryption of the object to people who are authorized. For instance, if the object belongs to a firm
 vault, then the firm key is used to wrap the object key. Every user that belongs to that firm will have a wrapped
 version of the firm private key, so that they each can unwrap their wrapped firm key and use it to decrypt the
 object.

 17

 In order to fully understand the abstraction of a vault key, however, a deeper explanation into the structure of the
 key exchange in the database is required. A summary of table relationships regarding keys is presented below to
 illustrate how a user may traverse the key chain to unwrap a document.

 Visual aids always help! When requesting a document from the database, the API fetches the document metadata
 that contains the following data:

 Document:
 -Vault: What vault the document was uploaded to
 -Object Key (Encrypted): The wrapped object key that, when unwrapped,
 can decrypt the document

 -Key Version: The version of the vault key used to wrap the object key

 18

 The vault field links the document to its uploading vault, which may be a user, a client or a firm. This reference
 contains the following data:

 Vault Private Keys:
 -Vault: The vault ID
 -User: User ID with access to vault
 -Version: Version of user, firm or client key used to encrypt the vault key
 -Vault key (encrypted): The private vault key, wrapped using the user public key (This can refer to the user
 key itself, the client key or the firm key.)
 -User Key Version: The version of the user key used to wrap the vault key

 If the Vault belongs to a user, the vault key is equivalent to the user key. If the vault belongs to a client or a firm (an
 “organization”), this vault key must further be unwrapped using the user key.

 At the final level of encryption lies the user with their wrapped (encrypted) private key. This key is wrapped using
 the key derived from their password. Unwrapping this key allows the user to unwrap the vault key and traverse the
 key chain up to the document.

 Because the first step in traversing the keychain is to unwrap the user's private key using the user’s derived key, it
 is impossible for an unauthorized user to unwrap the object key and decrypt any object. However, using this key
 exchange mechanism, it is possible for multiple users belonging to the same organization to receive their own
 version of the object key to unwrap organization documents.

 19

 Data Anonymization
 Whenever Corvee needs to access sensitive data, it is always done after anonymization. This need arises during form
 scanning and identification. The contents of all scanned documents are uploaded to S3 and then scanned through Textract
 to find all potential textual markers on a specific form, including the form contents. Because this process scrapes sensitive
 data, it is necessary to anonymize the markers before passing them on to the API where they will be processed. The goal
 of this anonymization is to be able to filter text that contains personal information from the markers Corvee uses to identify
 forms. The process is described in more detail in section §DOCUMENT IDENTIFICATION .

 Access Controls
 Access controls are fundamental to protecting sensitive data. Corvee employs cryptographic security protocols,
 server-side security protocols, client-side security protocols and proactive security measures.

 Cryptographic security protocols
 Corvee data is always encrypted under two or three layers of encryption. Everything that is encrypted is encrypted
 using keys appropriate to the level of access that should be granted to each datum. Additionally, these encrypted
 data are only transmitted through secure and encrypted channels. For instance, when uploading a document, it is:

 1. Encrypted on the Corvee App Client using the unique object key
 2. Transmitted over an HTTPS channel directly to S3
 3. Can only be retrieved indirectly by unwrapping the associated object key with the vault key, which must

 in turn be unwrapped using the associated user key (unless the vault key is the user key)

 User, Firm, Client Keys
 Every document in Corvee is encrypted symmetrically using its object key, which is in turn wrapped
 using the vault key. A vault can refer to a variety of parties: a user, a client or a firm. Additionally, each
 user can belong to an organization: a client or a firm. The process by which a specific user can access
 organization keys securely is described under §Key Exchange. For the purposes of the following section,
 we will no longer distinguish between individual user, firm or client keys, but rather refer to them
 collectively as “vault keys.”

 When a user wishes to access a document through the Corvee client portal, the user will request it
 through the Corvee API. The API fetches the document metadata, which contains the associated vault,
 the key encryption algorithm and the key version. This information is then used to fetch the associated
 wrapped vault key from the database that can be unwrapped to unwrap the object key used to decrypt
 the object.

 With the information in hand, the Corvee app client can then fetch the encrypted document from the S3
 vault, unwrap the vault key using the user’s own private key, unwrap the object key and then decrypt the
 document to display, analyze and process within the Corvee app client.

 Server-side security protocols
 The Corvee API is hosted on Fargate instances, which limits the interactions anyone can have with it to only those
 allowed by the API routes. In fact, there is no SSH access available to the Corvee API.

 Access to all authorized routes on the API is governed by the access token, generated with every new session.
 The API validates the access token for every request, barring any user who is not authorized to perform an action
 from doing so. This, combined with the inaccessibility of the API other than the available routes, secures the
 Corvee API from unauthorized access.

 20

 Additionally, a user without a valid request signature would be unable to unwrap the vault keys necessary to
 access, read or modify any encrypted content.

 Client-side security protocols

 HSTS (HTTP Strict Transport Security)
 The Corvee client side app enforces the HSTS specification. This restricts all traffic to and from the client
 side to HTTPS connections. Enforcing this restriction prevents man-in-the-middle downgrade attacks
 when accessing Corvee.

 Computing infrastructure

 Client

 Static Hosting
 The Corvee App Client is hosted as a static site, with all computations and processes taking
 place locally on the client. Because it is served as a static site, we can ensure that the same
 application code is delivered consistently to each person who accesses the app site. This
 provides us the ability to deploy updates easily and to make sure every user is on the same
 version, avoiding compatibility issues.

 A statically hosted app comes with numerous other advantages: It reduces the risk for code
 injection, permits code verification, loads more quickly and enables higher availability and
 uptime.

 WebCrypto
 Corvee uses WebCrypto to calculate hashes, generate electronic signatures, encrypt data and
 wrap keys. Corvee therefore can be trusted to generate its keys using the best random number
 generation provided by its host environment.

 Additionally, WebCrypto runs natively on host environments and utilizes hardware acceleration
 when possible. It is therefore highly efficient while encrypting and decrypting, allowing for the
 use of stronger keys.

 API
 The Corvee API runs on serverless infrastructure by AWS Fargate instances in two different US
 availability zones. Likewise, the database is replicated over the two availability zones. Finally, being
 located at two different facilities, internet connection and electricity are also provided separately.
 Separated facilities in this manner provide more stability to the system and more resilience against risks.

 Traffic to these instances is controlled first by a load balancer as well as Amazon’s firewall, stabilizing the
 system and preventing any instance from becoming overwhelmed.

 As with any Fargate instance, the API only accepts requests and writes to the log. This isolation keeps
 anyone at Corvee from gaining SSH root access into the system and changing the expected behavior
 without user knowledge.

 21

 Serverless functions

 Lambda
 The best way to ensure the user is in control of their data is to perform as much computation as
 possible on the client side, and most data processing is performed directly on the client. Some
 functions, however, do not allow for client-side processing. These have been offloaded to
 Lambda to permit cloud computation that is out of reach to Corvee but auditable to external
 parties and users.

 Corvee does not share any data from these services with Amazon. The functions that take place
 in Lambda are kept private by AWS Lambda and Amazon, and they lie out of reach to Corvee
 once deployed. This means that the user only needs to trust Amazon’s long track record for
 stability and its wide array of customers handling sensitive data. The user has full transparency
 to the data being sent to Corvee’s AWS Lambda functions and can see exactly what
 computations the Lambda functions do with user data through reproducible binaries and code
 verification.

 Code verification and reproducible binaries
 Our code that handles any data unencrypted is available for any user to inspect and verify. In
 this way, the user can see that Corvee at no point can access sensitive data for other purposes.
 Raw data is only ever processed within AWS Lambda, other AWS services isolated from Corvee
 or on the client machine. The user can verify the code themselves and even run the binaries
 themselves to verify that Corvee never saves sensitive data anywhere other than their S3
 repository and never saves any sensitive metadata without user managed encryption.

 API authentication and access control

 The API has five types of authentication routes:

 1. Unauthenticated routes
 a. Unauthenticated public routes
 b. Unauthenticated routes requiring internal key

 2. Authenticated Routes
 a. Authenticated routes
 b. Authenticated routes with non-scoped token
 c. Authenticated routes requiring internal key

 These different authentication routes control access to the exhaustive list of Corvee’s
 capabilities. Because the API is run on Fargate, the only interaction possible is via the API
 endpoints, which are all sorted into these five categories. These all require authentication except
 for unauthenticated public routes. Any unauthenticated public route is limited to functions that
 are exclusively related to signing in, account activation or fetching system version.

 Authenticated routes require the use of an access token, which is generated as described in §
 Password Authenticated Key Exchange (PAKE) .

 Routes requiring an internal token are limited to internal use and require a token that is only
 available to the Corvee system.

 22

 Proactive Security Measures

 Algorithm agnostic
 A key feature that allows us to future-proof Corvee is to make the design as algorithm agnostic as possible. Our
 system is built in such a manner that we can replace algorithms as needed with absolute ease.

 Additionally, Corvee does not hardcode the encryption/decryption methods in the code. Instead, it maintains
 metadata pertinent to encryption/decryption of every document and datum in the system. This allows us to build a
 fully backwards-compatible system to account for noncritical upgrades. The system will always be able to decrypt
 a datum previously stored on the system. This provides us with great flexibility to remain at the forefront of
 cybersecurity while supporting old document uploads.

 NIST recommendations comparison
 Corvee either meets or exceeds every recommendation set forth by NIST for cryptographic algorithms and key
 lengths: 5

 5 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

 23

 RSA-2048 vs. RSA-4096

 Corvee implements RSA-4096, which uses keys twice the length as RSA-2048.

 RSA-4096 has an equivalent of 150 bits of security compared to RSA-2048’s 112 6 , resulting in an encryption 2^38
 times — that is, hundreds of billions of times more secure than RSA-2048. While asymmetric encryption schemes
 with 112 bits of security are approved for use up until 2030, 7 Corvee’s implementation future proofs security far
 into the future!

 24

 Account Recovery
 Corvee does not have a way to recover lost accounts. Even if this were implemented, all previously uploaded documents
 would be rendered illegible because they were all encrypted using keys wrapped with the forgotten password. Given that
 part of data security is not only preventing unauthorized access, but also ensuring continued access in the case an
 account becomes inaccessible, Corvee has implemented a few strategies to do so without permitting for crackable
 systems.

 6 https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf

 7 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

 Emergency Recovery Kit
 Upon signing up, Corvee will provide the user with an emergency recovery kit that contains the recovery key for
 the account. Once a new password has been set, a new key can be derived to grant access back to the account.

 Group Member Recovery
 If the emergency kit is not available, the password for the account in question will be unrecoverable. The key
 sharing protocol implemented to grant access to all authorized users, however, permits another user with group
 access to still see all the documents and to invite the user whose account was lost back to the group. In this way,
 the lost account can be recreated with a new account and the same access to the documents it had lost.

 Local Recovery
 This is not ready yet but will be secret based.

 25

 Document Identification
 The document identification mechanism in Corvee is set up as a multistep process that keeps user documents secure.

 This graphic shows the system layout and the scalable components of the system. It is useful, however, to visualize the
 flow of a single document’s journey through this system.

 26

 Textract
 Corvee uses Amazon Textract as an OCR engine to extract information from uploaded documents. These extracted words
 are used to identify the form and year, referred to as markers. Additionally, Textract also extracts the data input on the form.

 Corvee has opted out from allowing Amazon or AWS visibility into the extracted text with the goal of protecting sensitive
 user data.

 Privacy of Sensitive Data
 Because sensitive data is impossible to distinguish from non-sensitive data prior to scanning, Corvee keeps the entire
 process away from Corvee servers. A document scan is encrypted and uploaded from the client-side directly to S3, which

 27

 triggers a Lambda function to retrieve the encrypted document and decrypt it. The image is then uploaded to Textract,
 where the text is scanned and sent back to the Lambda function. At this point, the Lambda function must distinguish
 between sensitive data and non-sensitive data, which it does by anonymizing each potential marker received from Textract
 and filtering them through the Corvee system to identify which markers contain sensitive data and which markers do not.

 Marker hashing
 During form identification, it is inevitable that when the document is scanned, all information on a document will
 be scanned. Corvee implements marker hashing and anonymization to prevent sensitive data from being picked
 up and processed in an insecure manner.

 In order to filter out that sensitive input information from the information Corvee uses to identify the form name
 and revision, Corvee anonymizes and changes the order of the scan results before any sort of transmission or
 processing takes place. Every element in the scan results is preprocessed by hashing using SHA-256 and
 cropping the hash to a fixed number of characters. This step ensures that none of the elements’ original content
 can be deduced from the hashed, cropped scan elements. Additionally, by cropping the hashes, we increase the
 number of potential collisions, further masking the true identity of the hashed markers.

 Then Corvee blocks meta-analysis of these preprocessed scan elements from betraying the contents by
 reordering them. The preprocessed scan elements are ordered alphabetically, so that their original order is
 completely obscured. Only these preprocessed scan elements are transmitted to the Corvee form identification
 system that keeps a record of the hashes for elements that are useful in form identification. The form identification
 can then compare the preprocessed elements to the elements useful for form identification and distinguish which
 hashes belong to useful elements and which hashes belong to sensitive data.

 28

 Once the preprocessed elements have been filtered in this manner, Corvee returns the list of nonsensitive element hashes
 to the user system, which will only then transmit the set of unhashed elements scanned from the form that are not sensitive
 data. This collection of non-sensitive data is then sent back to the form identification system over a secure channel, where
 it can be processed to identify the scanned form without revealing any sensitive data.

 No storage of any data other than form name and year
 No personal data from uploaded forms is stored in the corvee database. The only extracted data that is
 stored in the database is the form name, page number, and revision year. However, all data is
 anonymized and filtered during the form identification process, discarding all input data and leaving it
 only within the image of the document uploaded by the accountant. That means that the only person
 with access to the private information on the document will be those with access to the uploaded
 document itself.

 29

 E-Signature

 Data Integrity
 Data Integrity is one of the key components of NIST-DSS. It is important that data cannot be tampered with or
 changed or that any changes are logged and kept visible. Amazon’s QLDB is an ideal solution for this challenge as
 a transparent, immutable and cryptographically verifiable ledger.

 Audit Trail
 Every action in Corvee’s E-Signature component is logged and kept in an immutable ledger, which makes auditing
 Corvee Agreements simple, verifiable and always available. No one at Corvee has the capacity to edit or change
 any occurence on a Corvee Agreement.

 QLDB
 QLDB is Amazon AWS’s transparent, immutable and cryptographically verifiable ledger database. It
 tracks and stores every change in an application such that it can be later recalled and verified. Because it
 does not permit deletions or changes, it is impossible for anyone to undo an action. Any amendments to
 an agreement are appended to the ledger, but the original action remains verifiable.

 This functionality protects all users from potentially abusive contracts or data loss, so no matter what
 happens, a record remains of the signed contract, as well as any subsequent changes.

 30

 Appendix A: RSA
 RSA is a public domain asymmetric cryptosystem used mostly to share keys. It works by generating
 public/private key pairs for each party involved in a transaction. In this pair, the public key can be used to encrypt
 data, but cannot be used to decrypt it. Conversely, the private key can be used to decrypt data encrypted by the
 public key but cannot encrypt the data for the public key to decrypt. This contrasts with symmetric encryption,
 where the same key is used to both encrypt and decrypt data.

 Asymmetric Encryption
 In an RSA encrypted transaction, both parties send their public keys to the other. These can be shared freely
 because they can only be used to encrypt data but not to decrypt it. Once the client receives the server’s public
 key, the client can encrypt its request to the server using the server’s public key and make the request. The server
 receives the request that the client encrypted using the server’s public key and uses the server private key to
 decrypt the request. The server can then encrypt the response using the client’s public key and respond to the
 client with the encrypted response. The client then uses the client’s private key to decrypt the response from the
 server, which the server encrypted using the client’s public key.

 Key Generation
 Each party participating in an RSA cryptosystem needs to generate their public/private key pair.

 1. Select two integers p and q such that p ≠ q and p,q are both randomly generated prime numbers of similar
 magnitude and both are kept secret.

 2. Find the modulus for both the public and private keys n, where n = pq. n is also referred to as the key length.

 3. Find λ(n), where λ refers to Carmichael’s totient function 8 . The original statement of RSA used Euler’s totient
 function 9 , which can be substituted here with some simple arithmetic.
 Because p and q are prime, n is definitionally the lowest common multiple of p and q. It follows that

 a. a. λ(n) = λ(pq) = λ(lcm(p, q)) = lcm(λ(p), λ(q))
 b. b. Because p and q are prime, λ(p) = p-1 and λ(q) = q-1.
 c. c. λ(n) = (p-1) * (q-1)

 4. Find an integer 1 < e < λ(n) that is coprime to λ(n).

 5. Find the private key exponent d where d = e-1 mod λ(n), where d is also known as the modular multiplicative
 inverse of e mod λ(n).

 6. The public key now consists of the modulus n and the public encryption exponent e.

 7. The private key now consists of the private decryption exponent d.

 8. p, q, and λ(n) must be discarded.

 Encryption
 Assume Bob and Alice have created their key pairs and traded their public keys. If Alice wants to send Bob a message, she
 will encrypt it using Bob’s public key, which consists of modulus n Bob and encryption exponent e Bob .

 31

 First, Alice must turn her message MAlice->Bob into an integer m Alice->Bob where 0 ≤ m
 < n by using a padding scheme. Alice creates the wrapped message using:

 c Alice->Bob = m Alice->Bob
 (e_Bob) mod n

 Decryption
 Assume Bob and Alice already created their key pairs and traded their public keys. Alice just sent Bob a wrapped message
 c Alice->Bob using his public key. Bob can reverse the calculation to discover the original unencrypted message m Alice->Bob by
 using his decryption exponent d_Bob:

 (c Alice->Bob) d_Bob = (m e_Bob) d_Bob = m mod n

 Now given m, Bob can find the original message M by reversing the agreed upon padding scheme.

 8 Carmichael’s totient function associates to every positive integer n another positive integer λ(n) = m such that a m = 1 mod n
 for every integer a between 1 and n that is coprime to n.

 9 Euler’s totient function refers to Φ(n) = m where 1 ≤ m ≤ n and m is the count of positive integers that are relatively prime to n.

 Appendix B: AES-256-GCM
 The AES (Advanced Encryption Standard) is a subset of the Rijndael block cipher. The number refers to its strength (with
 256 being the strongest and the one in use for Corvee). Because AES describes a block encryption cipher, it must
 implement a cipher mode of operation in encrypt and decrypt streams of data.

 Symmetric Block Encryption
 Symmetric encryption contrasts with asymmetric encryption in that symmetric encryption uses the same key to both
 encrypt and decrypt a message; asymmetric encryption uses a public and private key pair to respectively encrypt and
 decrypt a message.

 AES is also a block cypher, meaning that it can only encrypt a fixed block size of 128-bit blocks. That means that
 messages of different sizes must be encoded with either padding or by stream encryption through a mode of operation.

 The state of the message prior during its encryption is referred to as the “state.”

 The block encryption is described here at a high level:

 1. Derive sufficient round keys for each round, depending on the strength of the algorithm. For Corvee’s
 AES-256 implementation, we need to generate 15 round keys - one for each round, plus one to initialize
 the encryption.
 Each round key is derived using Rijndael’s key schedule 10 .

 2. Initialize the encryption:
 a. a. AddRoundKey

 3. Repeat 13 times:
 a. a. SubBytes
 b. b. ShiftRows
 c. c. MixColumns
 d. d. AddRoundKey

 32

 4. Final Round:
 a. a. SubBytes
 b. b. ShiftRows
 c. c. AddRoundKey

 10 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf#page=23

 AddRoundKey
 Bitwise XOR addition of the round key to the current state of the message.
 Each round key is the same size as the message.

 SubBytes
 Non-linear mixing of the bytes in the message according to the Rijndael S-box. 11

 33

 ShiftRows
 Transposition of the state’s last three rows shifted left n steps, where n refers to the row index.

 MixColumns
 Linear mixing of four bytes in each column. Each column is transformed to its polynomial form, where the
 coefficients of the cubic polynomial are defined by the values in the column. This polynomial is then multiplied
 (mod x 4 +1) by the polynomial a(x) = 3x 3 + x 2 + x + 2.

 The inverse of this polynomial, used during decryption, is a -1 (x) = 11x 3 + 13x 2 + 9x + 14.

 Decryption occurs by reversing the steps involved in encrypting the block.

 34

 GCM Mode of Operation
 Now that we know how to encrypt each block, we can explore how an encryption mode can convert the blocks into a
 stream encryption.

 A counter mode turns a block cipher to a stream cipher. It functions by taking successive blocks of the input and
 encrypting them combined with a counter. The only requirement is that the Initialization Vector (Here called the Nonce) be
 unique. Using a non-unique IV reduces this encryption to a substitution cypher, introducing a major vulnerability. This is
 handled by Web Crypto in the implementation of Corvee because it employs the best random number generation available
 on the environment.

 The difference between Galois Counter Mode formalizes this stream cipher by taking a random initialization vector (here iv),
 a block number (e.g., Counter 0) and encrypting them with a block cipher E (here, AES). The result of this encryption is
 XOR’d with the block of plaintext to output the ciphertext.

 The ciphertext blocks can then be viewed as coefficients of a polynomial to evaluate at the key-dependent point H. The
 result of this evaluation can then be again encrypted and used as an authentication tag.

 35

 Appendix C: SHA-256
 SHA-256 refers to a set of cryptographic functions collectively termed “SHA-2,” where the number in the name refers to
 the number of bits in the digest. SHA-256, for instance, takes in 32-bit blocks and outputs a 256-bit block.

 The first step 12 in calculating a SHA-256 hash is to first pad the input message such that the length of the input message is
 a multiple of 512, with a total length of n*512. Then, the padded input is split up into n*16 blocks of 32 bits each. The final
 step before hashing the message is to initialize the hash by extracting the first 32 bits of the fractional parts of the square
 roots of the first eight prime numbers.

 12 https://medium.com/biffures/part-5-hashing-with-sha-256-4c2afc191c40

 36

 A message schedule is then created by splitting up the padded input message into 512-bit input blocks (each made of 16
 32-bit integers). For each block, we generate three additional rotations of the block:

 Each of the 64 resulting integers in the block schedule is then processed as summarized by this graphic to produce the
 hash of the block.

 13 https://en.wikipedia.org/wiki/SHA-2

 37

 The red character refers to addition mod 2. 32

 After each of the 64 integers has been processed, the result is added to the previous hash and modulo 2. 32

 The result after passing through all the blocks is the SHA-256 hash of the message.

 Appendix D: HMAC

 HMAC is a message authentication code that uses both a hash function and key to calculate a hash signature that will
 verify a message’s authenticity and integrity. A MAC will provide a verification of its progenitor message’s authenticity and
 integrity by calculating a signature based on the contents of the message, which can then be verified by the receiving party
 to prove the message has not been tampered with during transit and that the sender is indeed who they say they are.

 While attaching a MAC to a message serves to prove authenticity and integrity, it is not by itself enough to stop data
 interception, and some vulnerabilities mean that additional steps must be taken to protect against data tampering or
 interception. An HMAC does NOT encrypt the message. This must be done separately. The HMAC only serves to verify the
 message that has been sent, encrypted or not. This implies that HMAC is only meant as a complement to security, not
 additional data security.

 The HMAC addresses this issue by using two passes of a hash computation. A secret key is first used to derive two keys:
 an inner and an outer key. The inner and outer keys are padded to match the block size of the message. The inner key is
 then concatenated to the message and the result is hashed to produce the inner hash. The outer hash is then
 concatenated to the inner hash and then again hashed to produce the actual HMAC.

 This double hashing makes the execution of a length-extension attack — where the attacker appends data to the message
 without affecting the MAC — as well as a hash collision less likely. Using HMAC is effective enough that there are no
 extension attacks that can spoof a valid MAC.

 38

